hybrid-unified-portfolio

🚀 Hybrid Unified Portfolio System

Next-Generation Professional Discovery Platform

Combining vector embeddings, semantic search, and structured data for intelligent skill matching and portfolio discovery


📋 Overview

The Hybrid Unified Portfolio System is an advanced framework that bridges traditional structured portfolio data with cutting-edge AI/ML technologies. It enables:


🏗️ Architecture

System Layers

┌─────────────────────────────────────────────┐
│         APPLICATION LAYER                   │
│  ├─ GitHub Profile (Frontend)               │
│  ├─ Portfolio Website                       │
│  └─ Discovery API                           │
└──────────────────┬──────────────────────────┘
                   │
        ┌──────────┴──────────┐
        ▼                     ▼
┌──────────────────┐  ┌──────────────────┐
│  VECTOR LAYER    │  │ DATA LAYER       │
│                  │  │                  │
│ - Skill vectors  │  │ - Skill matrix   │
│ - Project vecs   │  │ - Projects DB    │
│ - Experience     │  │ - Achievements   │
│ - Code samples   │  │ - Experience     │
└────────┬─────────┘  └────────┬─────────┘
         │                     │
         └──────────┬──────────┘
                    ▼
        ┌──────────────────────┐
        │  UNIFIED INDEX       │
        │  (Hybrid Search)     │
        │                      │
        │ - Semantic matching  │
        │ - Cross-domain link  │
        │ - Recommendation     │
        └──────────┬───────────┘
                   │
        ┌──────────┴──────────┐
        ▼                     ▼
┌──────────────────┐  ┌──────────────────┐
│  DISCOVERY API   │  │  ANALYTICS       │
│                  │  │                  │
│ - REST/GraphQL   │  │ - Embeddings     │
│ - WebSocket      │  │ - Metrics        │
│ - Real-time      │  │ - Insights       │
└──────────────────┘  └──────────────────┘

🛠️ Technology Stack

Vector & AI/ML

Data Layer

API & Backend

Frontend & Integration


📊 Skill Vector Dimensions

Each professional is represented as a multi-dimensional vector across these axes:

Core Competencies (Weighted)

AI/ML Engineering:
  - Machine Learning Models: 8.5/10
  - NLP & LLMs: 8.0/10
  - Computer Vision: 7.5/10
  - MLOps & Deployment: 8.2/10
  
Web3 & Blockchain:
  - Smart Contract Auditing: 8.8/10
  - DApp Development: 8.0/10
  - Security Analysis: 8.5/10
  - Protocol Design: 7.8/10
  
DevOps & Infrastructure:
  - Kubernetes Orchestration: 8.3/10
  - CI/CD Pipeline Development: 8.5/10
  - Infrastructure as Code: 8.2/10
  - Cloud Architecture: 8.0/10

Experience Vectors

Years in Field: 5+ years
Project Complexity: 8.5/10
Team Leadership: 7.5/10
Innovation Index: 8.8/10
Open Source Contribution: 861 commits/year

🔄 Integration Points

GitHub Profile Integration

Input: GitHub username
  ↓
Fetch: Profile data, README, repositories
  ↓
Parse: Skills, projects, contributions
  ↓
Generate: Embeddings & vectors
  ↓
Output: Unified portfolio representation

Hybrid Search Example

query = "Python AI/ML engineer with Web3 expertise"

# Search across multiple dimensions:
1. Semantic similarity (embeddings)
2. Structured skill matching (taxonomy)
3. Project relevance (code analysis)
4. Experience alignment (timeline)
5. Community impact (contributions)

result = hybrid_search(query, weights=[0.3, 0.2, 0.2, 0.15, 0.15])

📁 Repository Structure

hybrid-unified-portfolio/
├── README.md                    # This file
├── docs/
│   ├── architecture.md          # Detailed architecture
│   ├── embedding-strategy.md    # Vector embedding approach
│   ├── api-reference.md         # API documentation
│   └── examples.md              # Usage examples
├── src/
│   ├── embeddings/
│   │   ├── skill_embedder.py   # Skill → vector conversion
│   │   ├── project_embedder.py # Project → vector conversion
│   │   └── hybrid_index.py      # Unified index management
│   ├── data/
│   │   ├── github_client.py     # GitHub API integration
│   │   ├── skill_matrix.py      # Structured skill data
│   │   └── portfolio_db.py      # Portfolio storage
│   ├── search/
│   │   ├── semantic_search.py   # Vector-based search
│   │   ├── structured_search.py # SQL/filter-based search
│   │   └── hybrid_search.py     # Combined search
│   └── api/
│       ├── routes.py            # API endpoints
│       └── models.py            # Data models
├── config/
│   ├── embeddings.yaml          # Embedding configs
│   ├── database.yaml            # Database configs
│   └── github.yaml              # GitHub API configs
├── tests/
│   ├── test_embeddings.py
│   ├── test_search.py
│   └── test_integration.py
├── requirements.txt
├── Dockerfile
└── docker-compose.yml

🚀 Getting Started

Installation

# Clone repository
git clone https://github.com/romanchaa997/hybrid-unified-portfolio.git
cd hybrid-unified-portfolio

# Install dependencies
pip install -r requirements.txt

# Set up environment variables
cp .env.example .env
# Edit .env with your configurations

# Initialize database
python scripts/init_db.py

Basic Usage

from src.embeddings import PortfolioEmbedder
from src.search import HybridSearch

# Initialize embedder
embedder = PortfolioEmbedder(
    model="sentence-transformers/all-MiniLM-L6-v2",
    vector_db="pinecone"
)

# Add GitHub profile
embedder.add_github_profile("romanchaa997")

# Perform hybrid search
search = HybridSearch(embedder)
results = search.find_matching_opportunities(
    query="AI/ML engineer with Python and Web3",
    filters={"location": "Remote", "salary_min": 150000}
)

for result in results:
    print(f"{result.title}: {result.match_score}%")

📈 Key Features

Vector Embeddings

🔍 Semantic Search

📊 Structured Data

🔗 Hybrid Matching

🌐 GitHub Integration


💡 Use Cases

For Job Seekers

For Recruiters

For Freelancers/Agencies


🔮 Future Roadmap


📚 Documentation

Detailed documentation available in /docs:


🤝 Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.


📞 Contact


📄 License

MIT License - See LICENSE for details


Built with ❤️ for the future of intelligent professional discovery

Last updated: December 2025